ON QUASILINEAR ELLIPTIC SYSTEMS INVOLVING MULTIPLE CRITICAL EXPONENTS
Authors
Abstract:
In this paper, we consider the existence of a non-trivial weaksolution to a quasilinear elliptic system involving critical Hardyexponents. The main issue of the paper is to understand thebehavior of these Palais-Smale sequences. Indeed, the principaldifficulty here is that there is an asymptotic competition betweenthe energy functional carried by the critical nonlinearities. Thenby the variational method, we obtain the existence non-trivialweek solution for the system
similar resources
On Multiple Solutions for a Singular Quasilinear Elliptic System Involving Critical Hardy-sobolev Exponents
This paper is concerned with the existence of nontrivial solutions for a class of degenerate quasilinear elliptic systems involving critical Hardy-Sobolev type exponents. The lack of compactness is overcame by using the Brezis-Nirenberg approach, and the multiplicity result is obtained by combining a version of the Ekeland’s variational principle due to Mizoguchi with the Ambrosetti-Rabinowitz ...
full textOn a Class of Quasilinear Elliptic Systems in R Involving Critical Sobolev Exponents
We study here a class of quasilinear elliptic systems involving the p-Laplacian operator. Under some suitable assumptions on the nonlinearities, we show the existence result by using a fixed point theorem.
full textThe Solvability of Concave-Convex Quasilinear Elliptic Systems Involving $p$-Laplacian and Critical Sobolev Exponent
In this work, we study the existence of non-trivial multiple solutions for a class of quasilinear elliptic systems equipped with concave-convex nonlinearities and critical growth terms in bounded domains. By using the variational method, especially Nehari manifold and Palais-Smale condition, we prove the existence and multiplicity results of positive solutions.
full textQuasilinear Elliptic Equations with Critical Exponents
has no solution if Ω ⊂ R , N ≥ 3, is bounded and starshaped with respect to some point, and 2∗ = 2N/(N − 2). In (P0) the nonlinear term is a power of u with the critical exponent (N + 2)/(N − 2). This terminology comes from the fact that the continuous Sobolev imbeddings H 0 (Ω) ⊂ L(Ω), for p ≤ 2∗ and Ω bounded, are also compact except when p = 2∗. This loss of compactness reflects in that the ...
full textQuasilinear Schrödinger equations involving critical exponents in $mathbb{textbf{R}}^2$
We study the existence of soliton solutions for a class of quasilinear elliptic equation in $mathbb{textbf{R}}^2$ with critical exponential growth. This model has been proposed in the self-channeling of a high-power ultra short laser in matter.
full textExistence result for semilinear elliptic systems involving critical exponents
where ⊂RN (N ≥ ) is a smooth bounded domain such that ξi ∈ , i = , , . . . ,k, k ≥ , are different points, ≤ μi < μ̄ := (N– ), L := – · – ∑k i=μi · |x–ξi| , η,λ,σ ≥ , a,a,a ∈ R, < α, β < ∗ – , α + β = ∗. We work in the product space H ×H , where the space H :=H ( ) is the completion of C∞ ( ) with respect to the norm ( ∫ |∇ · | dx) . In resent years many publications...
full textMy Resources
Journal title
volume 3 issue 3 (SUMMER)
pages 217- 236
publication date 2013-03-21
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023